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Abstract
Monte Carlo Tree Search, neural network-based
policy and value evaluation, and self-play are
three popular techniques widely used in reinforce-
ment learning. Inspired by the recent AlphaGo
Zero paper, we design, construct, train, and evalu-
ate an agent to play the Game of Life and Death
(GOLAD) using a combination of the aforemen-
tioned techniques. GOLAD is a two-player game
based on Conway’s Game of Life (GOL), where
players can manipulate their cells after each simu-
lation step. We obtain positive results on a small
board versus a random agent, but challenges re-
main in transferring our player to larger boards
and playing versus more sophisticated opponents.

1. Introduction
We use reinforcement learning (RL) techniques to create an
agent that plays the Game of Life and Death (GOLAD). The
game is governed by a few relatively simple rules and a sin-
gle objective: to survive longer than your opponent. Despite
this simplicity, it requires significant amounts of strategy
due to its large state space (18x16 grid with 3 possible states
for each cell) and action space, much like the game of Go.

GOLAD is a two-player game based on Conway’s Game
of Life (GOL) (Gardner, 1970), a cellular automaton ini-
tially proposed by J.H.Conway in 1970. The original GOL
is a zero-player game where the transition and results are
deterministic based on the initial state and a set of fixed
transition rules. GOLAD converts GOL to a two-player
game by restricting the game to a fixed-size (18× 16) grid
space, assigning cell ownerships to players, and allowing
players to manipulate their cells after each simulation step.

In GOLAD, each player can take one of three actions on
their turn:
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Figure 1. Partial board of an ongoing GOLAD game visualized by
Riddles.io. Small squares represent cells that will become alive at
the next time step and cracked large squares represent cells that
will be dead at the next time step. The light blue highlighting
represents the location of the current action.

1. Kill any living cell.

2. Birth a new living cell of their own in any empty (dead)
cell, by sacrificing two of their own living cells.

3. Pass (do nothing).

After each player’s turn, the game engine simulates one step
of GOL. Cells with two or three neighbors live on to the next
step, while cells with more than three neighbors die from
overcrowding, and cells with fewer than two neighbors die
from loneliness. Dead cells with exactly three neighbors are
reborn into living cells, belonging to the player who owns
the majority of the three neighbor cells. A visualization of a
partial board is shown in Fig. 1.

The game ends when either of the players loses all its cells,
or when the turn limit (100 by default) is reached. If both
players lose their last cells at the same time or the turn limit

https://docs.riddles.io/game-of-life-and-death/rules
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is reached, the game ends as a tie. Otherwise, the player
with surviving cells wins the game.

The discrete grid space and the turn-based nature of GOLAD
allow us to model it as a Markov Decision Process (MDP).
Each episode consists of a full game, terminating when all
of a player’s cells are eliminated or when the turn limit is
reached. While various bots have been submitted to the
Riddles.io challenge website, to the best of our knowledge,
none have used Monte Carlo Tree Search (MCTS) self-play
and neural network policy and value evaluation.

2. Related Work
While there has not been significant published work ad-
dressing learning how to play GOLAD, there have been
numerous attempts to understand and address the complex-
ity of GOL. For instance, it has been shown that GOL can
simulate a universal Turing machine (Rendell, 2011), mak-
ing predicting future states impossible in general without
direct simulation (Alexiou et al., 2018).

In order for an agent to make informed decisions in GO-
LAD, it needs to accurately predict the value of the current
state, which is largely determined by a future state (whose
cells died first) of a GOL simulation with non-deterministic
future manipulations (opponent’s actions), without running
full simulations to reach all possible future states. This com-
plexity in GOL makes GOLAD an interesting problem to
tackle from a RL perspective.

With the success of Deep Blue (Campbell et al., 2002) in
chess, there has been additional interest in solving more
complex games. The game of Go, with its astronomical state
space, set itself as a major target, and even the “holy grail”
to some. Recently, computers were able to defeat the world
champion in Go using the innovations of AlphaGo (Silver
et al., 2016). After AlphaGo’s success, AlphaGo Zero was
developed to learn entirely from self-play, removing the
need for human input in the form of expert examples (Silver
et al., 2017b). While impressive, both of these algorithms
took weeks to train on 50 or more GPUs. With the release
of Alpha Zero, the models can now be trained within hours
or days, depending on the game, but still require thousands
of TPUs (Silver et al., 2017a).

In addition to investigating whether AlphaGo Zero’s ap-
proach can be applied to the more complex and novel GO-
LAD, we also attempt to address its feasibility with more
reasonable computational constraints (a single GPU) and
shorter training time (1-3 days).

Figure 2. Overview of MCTS self-play. Adapted from (Silver
et al., 2017b). At each time step, the agent performs a number
of simulated rollouts using MCTS, evaluating each node’s value
using the neural network. Afterward, the agent samples its next
action from a probability distribution.

3. Methods
3.1. Game Engine & Simulation

Although a GOLAD game engine written in Java is available
from Riddle.io, we chose to implement our own GOLAD
engine in Python for easier interfacing with the self-playing
MCTS and neural network implementations. The engine
keeps track of current game state, applies changes and sim-
ulates GOL for one step after each player’s move. With
our implementation, the MCTS agent is able to repeatedly
perform self-play and simulate the game on its own without
the need for the GOLAD engine provided by Riddle.io. A
separate bot instance named MCTSBot is implemented for
use in performance evaluation, invoking the same MCTS
search function but interfacing with the original Riddles.io
GOLAD engine instead.

3.2. Algorithm

The recent success of AlphaGo (Silver et al., 2016) in the
game of Go provides promising techniques that can be ap-
plied to GOLAD. We will also use the concept of self-play,
described by Silver et al. (Silver et al., 2017b), to train our
agent without the need for “expert” games to learn from.

There are two key parts of the AlphaGoZero self-play algo-
rithm: MCTS and neural network policy and value evalua-
tion. To simplify the implementation, the training procedure
is as follows. First, MCTS is run serially to fill a data buffer.
Then random batches are sampled from this buffer and fed
to the neural network, which is trained for a predefined
number of steps. This new network is then used for the
next phase of MCTS data generation and the procedure is
repeated. Fig. 2 and Fig. 3 illustrate these two components.

3.2.1. NEURAL NETWORK POLICY AND VALUE
EVALUATION

The neural network takes in a game state representation
at each time step and outputs v, a scalar between -1 and
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Figure 3. Overview of NN training. Adapted from (Silver et al.,
2017b). π represents the ”true” probability distribution over possi-
ble moves calculated by MCTS, and z represents the winner of the
self-play game, encoded as a scalar in {-1,1}. p and v represent
the probability distribution and the winner predicted by the neural
network, respectively.

1 predicting the value of the current game state (where 1
represents a game victory for Player 0 and -1 represents a
game victory for Player 1), and p, a vector representing the
probability distribution over all possible moves from the
given state. MCTS uses the neural network to evaluate each
node in the tree (see next section for more details).

The neural network trains on each batch of self-play itera-
tions in order to minimize the difference between the values
it predicts and the values found during self play and MCTS.
The loss calculation L(p, v, π, z) is given below, where π
and z represent the policy found by MCTS and the self-play
winner, respectively:

L(p, v, π, z) = (z − v)2 − πT log p

MCTS therefore fills the role of the “target network” in
DQN, which is updated at intervals (here, after the neural
network finishes training on a batch of self-play examples).

We based the network’s architecture (visualized in Fig. 4)
on the neural network architecture described in the appen-
dices of (Silver et al., 2017b). To summarize, the neural
network consists of a residual tower in which each residual
block contains two convolutional layers, each followed by
a batch normalization and rectified linearity, followed by
a skip connection (He et al., 2016). The network is then
split into a policy head and a value head. The policy head
contains a single convolutional layer followed by a batch
normalization and rectified linearity, followed by a fully con-
nected probability output over each cell on the game board
plus one (for the ’pass’ move). The value head contains a
convolutional layer followed by a batch normalization and
rectified linearity, followed by two fully connected layers
outputting a scalar between -1 and 1. We reduced the num-

ber of residual blocks from 19 to 3 to account for a smaller
game board size and less compute power.

3.2.2. MONTE-CARLO TREE SEARCH SELF-PLAY

The MCTS procedure generates data (st, πt, z) using self-
play for the supervised neural network training. In a game,
at each timestep t, MCTS is run from the current state st
using the current neural network fθ to generate output prob-
abilities πt for each possible move from that state. A move
is then sampled from this distribution to be the action taken.
We simplify the action space by choosing cells to sacrifice
for birth moves randomly. This gives π a dimensionality
of (board height× board width+1), by also making use
of the observation that each location on the board can only
either be a kill or birth move, but not both. The additional
dimension corresponds to the pass move.

The MCTS algorithm follows the implementation described
in (Silver et al., 2017b) with some minor modifications and
additions. Most notably, τ is set at 1 for the whole game,
we do not use random symmetries, and we play against the
most recent NN instead of using an evaluator. We also add
a beam search which reduces the computational complexity.
The evaluation of the effect of these simplifications to the
final performance of the agent is left for future work.

For completeness, the MCTS will be briefly described here,
but we refer the reader to (Silver et al., 2017b) for further
details.

Select We define the root node s0 to be the current state st.
From the root node we iteratively select a child node until
a leaf node sL is reached using a PUCT algorithm variant
(Rosin, 2011). At each step t < L, an action is chosen using
at = argmaxa(W (st, a)/N(st, a) + U(st, a)),

U(s, a) = cpuctP (s, a)

√∑
bN(s, b)

1 +N(s, a)
, (1)

where cpuct is a constant that determines the level of explo-
ration and set to 1 for our experiments. P (s, a) is the prior
probability of selecting the node, N(s, a) is the total visit
count, and W (s, a) is the total action value.

Expand and evaluate The leaf node sL is then evaluated
by the current NN fθ which returns p, v = fθ(sL). If the
leaf node is also the root node, it is expanded for all actions,
otherwise the only the most probable actions are expanded.
This is to ensure sufficient exploration. For each new node,
P (s, a) is initialized to pa, and N(s, a) and W (s, a) are
initialized to 0.

Backup We update the statistics of each node by incre-
menting N(s, a) = N(s, a) + 1 and W (s, a) =W (s, a) +
v.
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Figure 4. Neural network architecture, consisting of a residual tower (He et al., 2016), a policy head, and a value head. Adapted from
(Silver et al., 2017b).

Play After the specified number of max MCTS itera-
tions, an action a is selected to play from the root node
s0, proportional to the exponentiated visit count, π(a|s0) =
N(s,a)

1
τ∑

bN(s,b)
1
τ

, where τ controls the level of exploration and is

set to 1 for training and an infinitesimal value, τ → 0, for
evaluation. Therefore, the agent select actions proportional
to the visit counts when generating data, but greedily during
evaluation.

3.2.3. CHALLENGES

Compared to the AlphaGo Zero researchers, we had rela-
tively little computational power at our disposal: a single
machine with a single GPU, compared to AlphaGo Zero’s
64 GPU workers and 19 CPU parameter servers. AlphaGo
Zero also trained for 40 days to achieve its final performance,
whereas we were constrained to about 2 weeks of training
time - effectively much less, since we restarted several times
to retune hyperparameters, fix bugs, and change board size.
The makers of Leela Zero, an open source reimplementation
of AlphaGo Zero, estimate that recomputing the weights
trained by AlphaGo Zero on commodity hardware (similar
to what we used for our training) would take 1,700 years.

With these obstacles in mind, we decided to make some sac-
rifices to performance in an effort to reduce the training time
required to obtain preliminary results. First, we reduced the
board size to 6x6, with the intention of increasing the board
size once we were able to obtain good results on the 6x6
board. Next we simplified the action space.

GOLAD’s action space is enormous compared to Go’s; there

are three actions that can be taken, and the birth action
involves selecting two living cells to sacrifice. If the MCTS
player has 10 living cells, there are 45 possible sacrifice
choices for each possible birth position. If the player has
100 living cells, there are 4950 possible choices. Even if we
had access to the same compute resources as AlphaGoZero,
it would take many times longer to compute each move in a
game of GOLAD using MCTS than it would for a game of
Go.

We chose to simplify the action space by randomizing the
sacrifice choice. Every time the MCTS player takes a birth
action, the two required sacrifices are chosen randomly from
the player’s living cells. The choice of sacrifices is made at
the beginning of each turn and held constant for all MCTS
simulations. This simplification reduces the action space
and makes it possible to run MCTS in a feasible amount of
time on a single machine.

4. Experiments & Results
We generate a buffer of data from multiple MCTS self-play
games containing 2000 samples; each sample is a single
turn (st, πt, z) in GOLAD. We set the number of MCTS
iterations per move to 15 and the beam width to 10. We
train the NN using a batch size of 16 and learning rate
α = 0.01, and we implement gradient clipping using a
maximum gradient norm of 5. Every 5000 training steps the
buffer is updated by discarding 25% of the oldest samples,
and replacing it with 500 samples from new games, using
the updated neural network. 25% was arbitrarily chosen as
a compromise between spending too much time gathering
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Figure 5. Example output from MCTS self-play. Cell coordinates
are column-major and using 0-based indexing, following Rid-
dles.io specifications.

new samples and training the network on too much outdated
data.

We evaluate our training results by playing our MCTS agent
(denoted as MCTSBot) against a baseline random-decision
agent (denoted as RandomBot) using the original Riddles.io
game engine for 100 independent games. To ensure fairness,
MCTSBot and RandomBot take turns to make the first move
(i.e. assigned as Player 0), and the randomly generated
initial board is guaranteed to be symmetric. Both players
begin the game with 10 living cells.

We count each game MCTSBot wins as “1 win”, and each
game ending in a draw as “0.5 wins”, to calculate the win-
ning rate as our performance metric:

winning rate =
number of wins

number of games played

On the 6x6 game board, after training for 2.55 million train-

Figure 6. Results throughout training on the 6x6 board.

ing steps and about 260,000 game turns, the MCTSBot
achieves a 70% win rate against RandomBot. For compar-
ison, PassBot, an agent which simply chooses ”pass” on
every turn, achieves a 60% win rate against RandomBot.
This strongly suggests that passing is a superior strategy to
playing random moves, likely because random moves are
more likely to result in the death of the passing player’s own
cells than their opponents (due to the sacrifice mechanic).
MCTSBot only achieves a 50% win rate against PassBot,
suggesting that MCTSBot is at least able to learn an active
strategy that matches the performance of passing on every
turn, but is unable to surpass it on the limited board size.

We hypothesized that MCTSBot’s relatively poor perfor-
mance was partially due to the constraints of the 6x6 board.
Good strategies in GOLAD rely on setting up stable cell
structures and working to disrupt the opponent’s structures;
however, on such a small board, setting up a stable structure
is a difficult feat. During training, we observed that the only
stable structure to appear with any regularity was the 2x2
block structure, which can survive the death of any one cell
in the structure.

Figure 7. Block structure, a stable structure learned by MCTSBot
on the 6x6 board.

We tested our hypothesis by training on an 8x8 game board
for 2.9 million training steps. However, throughout training,
MCTSBot was unable to perform better than RandomBot;
its highest win rate was 46%.

We speculate that good strategies for the 8x8 board may
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be even harder to identify compared to the 6x6 board, and
that MCTSBot may need to train several times longer on
the 8x8 board due to the larger action and state space, or
run more MCTS simulations for each step. Unfortunately,
training on the 8x8 board already takes roughly twice as long
for each step as training on the 6x6 board, and increasing
the number of simulations has a detrimental effect on the
runtime of MCTS. Training longer on the 8x8 board or
increasing the board size to further test our small board
hypothesis is therefore out of scope for this quarter.

5. Conclusion
We demonstrate the potential of the MCTS self-play frame-
work for solving a novel complex game, GOLAD. While the
MCTS self-play framework is able to achieve fairly good
performance against a random agent on a 6x6 board, its
performance on an 8x8 board is worse than random given
limited training time and resources.

The following future work remains:

• Transfer results from the 6x6 board to a larger board
(such as 18x16) using transfer learning.

• Use MCTS with neural network evaluation for training,
and use neural network evaluation only for playing
evaluation games to reduce execution time.

• Compare performance of agent using MCTS with neu-
ral network evaluation to an agent using only neural
network evaluation.

• Encode each cell’s future transition in the neural net-
work input to speed up training. The large changes that
the board undergoes between each time step are diffi-
cult for the neural network to learn, and encoding each
cell’s next state (dead, alive, or reborn) in the input
could reduce the time required to learn the simulation
patterns.

• Train for more iterations on larger batches from self-
play, and tune hyperparameters such as the learning
rate α, layer and filter sizes for the residual blocks,
number of residual blocks, and regularization coeffi-
cient λ.

• Optimize MCTS so that more simulations can be per-
formed at each time step with less impact to training
time.
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The code for our project is available on Github.
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